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Abstract

This paper introduces the notion of a smart data layer
for the Internet of Everything. The smart data layer can
be seen as an AI that learns a generic representation
from heterogeneous data streams with the goal of un-
derstanding the state of the user. The smart data layer
can be used both as materials for design processes and
as the foundation for intelligent data processing.

IoT and Interaction
One of the more ominous visions of the future Internet of
Everything (IoE) is a swarm of loosely integrated systems
(e.g. the smart home, social media apps, health and fitness
wearables, etc.) that constantly crave our attention with ap-
plications bombarding us with notifications and alerts, and
devices demanding administration and care. Rather than im-
proving quality of life and efficiency of work, such exces-
sively attention-seeking technology will lead to cognitive
overload, adding both stress and complexity to everyday life.
The main problem, and risk factor for such a future tech-
nological dystopia, is that different forms of smart technol-
ogy do not blend and cannot interface with one-another, and
most importantly, end-users have to learn how to interact
with each of the different systems, one by one. In some
sense, this is like personal computing before the desktop
metaphor, the Internet before the web, or mobile computing
before touch interfaces. In short, Internet of Things (IoT)
(and IoE) lacks an appropriate interface paradigm.

As one step towards a solution to this interface problem,
we investigate the possibility of defining and applying a
smart data layer that integrates heterogeneous data streams
into a coherent representation that can serve as the founda-
tion for further, intelligent, data processing. The idea is not
to provide a uniform communication protocol between ap-
plications and devices, but to provide a representation of the
state of the user, to enable more intelligent interface design.
The problem we would like to mitigate is for applications
and devices to know when and how to interact with the user.
As a simple example, if the user is in a very agitated state,
we probably should not send loud audible notifications that
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the milk in the refrigerator is almost finished and needs re-
filling, or for that matter send intense tactile vibrations indi-
cating that the user has been stationary for too long and that
it is now time to get up and move. Our vision is a data layer
that learns from the user’s behaviors, and that is empathetic
to both the current state of the user and the current state of
the system. This position statement describes our current re-
search path, and provides some background and motivation
for the smart data layer.

AI and Representation Learning
AI will be a critical component in the development of IoT
and its various flavors, not only for making sense of the in-
terconnected systems, but also – and equally important – for
making sense of the user of the system. The ultimate goal
is to understand the user; where is the user, what is the user
doing, how is she feeling, what are her goals? In short, what
is the state of the user? Note that we use the term “state” in
a broad sense; it can encompass anything from a geographi-
cal location, to a task, to the emotional state of the user, to a
prediction of the user’s next action.

Solving individual tasks such as locating the user, classi-
fying her behavior, or detecting her sentiment are interest-
ing, and potentially useful, tasks in their own right, but they
require an ontology to start from. We have to know which
are the possible locations, behaviors and sentiments in order
to determine which of them the user belongs to. Defining or
acquiring such ontologies is typically a task-specific prob-
lem, as is the optimization of classifiers. We do not believe
that we (at present) can design or learn one generic ontology
and one generic classifier that can solve any problem. How-
ever, we do believe that we can learn one generic representa-
tion that can be common for all these problems. Ideally, this
representation will capture the causal factors of variation in
streaming data of different modalities and rates.

The idea of a generic representation that can be used for
various different purposes is not novel in itself, see Bengio
et al. (2013) for a review. A good representation simplifies
tasks, and a desirable property of a representation is the sep-
aration of the causal factors that gives rise to a phenomena.
Digital images are an example of representations that are dif-
ficult to use directly for solving computer vision tasks. The
pixels in the two-dimensional grid explain very little of the
scene that generated them. A representation that directly en-
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codes the objects in the scene, their state and surroundings
would make automatic decisions based on the scene much
simpler. Representation learning can be thought of as a gen-
eralization of this inverted rendering process, where we in-
fer what the causal factors were that generated the data us-
ing methods from statistical learning. Popular methods in-
clude latent variable models, deep neural networks and com-
pressed sensing.

Several researchers have published papers in this research
direction; one example is Collobert et al. (2011), who pro-
pose a unified neural network architecture that can be ap-
plied to natural language processing and learns shared rep-
resentations of language useful for solving a variety of tasks.
The field of deep learning to a large extent embodies the idea
that it is possible to learn a compositional, generic represen-
tation that can be used to solve many different problems; in
image recognition for example, it has become customary to
use the unit activations of deep neural networks trained on
very large datasets (such as AlexNet (Krizhevsky, Sutskever,
and Hinton 2012) or ResNet (He et al. 2016)) as the basic
representation when building novel classifiers. This method
of transfer learning is useful where representations learned
on large data sets can be used to solve related tasks where
data is scarce, see Oquab et al. (2014).

Another recent example of representation learning is the
StarSpace framework of Wu et al. (2017), which is a general-
purpose neural network representation that can solve a wide
variety of problems.

(Word) Embeddings as a Starting Point
Our vision of the smart data layer builds on the prior art dis-
cussed in the previous section, and is inspired by the devel-
opment of word embeddings for natural language processing
(Turney and Pantel 2010). Embeddings are low-dimensional
representations that compress and encode co-occurrence in-
formation from the input data. A co-occurrence event is sim-
ply the simultaneous occurrence of two (or more) variables.
In language data, the variables are typically words, and a
co-occurrence is simply a sequence of words. The point of
embedding co-occurrence information in a low-dimensional
representation is that the resulting representation generalizes
from the observed co-occurrence events, and enables quan-
tification of distributional (as in a word’s distribution over
the data) similarity. Since distributional similarity is a proxy
for semantic similarity, embedding models can be seen as
computational models of meaning (Sahlgren 2006).

Word embeddings have become ubiquitous in both nat-
ural language processing and machine learning. However,
current embedding models rely on a severely limited, and
somewhat naı̈ve, ontology. Most current models are con-
fined exclusively to text data, with words being the only lin-
guistic items under consideration. The fact that two words
tend to co-occur is admittedly a useful clue to the meaning
of the words, but there may be other types of contextual in-
formation that can provide equally useful clues for modeling
meaning. In natural discourse, tone of voice, gestures, facial
expressions, even time and location are important contextual
factors that influence semantic processing. It seems reason-

able to assume that this should apply also to computational
models and AIs that aim to learn language.

Some recent studies have begun to investigate the pos-
sibility to extend the ontology of the co-occurrence model
with other modalities such as vision and sound (Bruni,
Tran, and Baroni 2014; Vijayakumar, Vedantam, and Parikh
2017). Our aim is more ambitious; one of the goals of the
smart data layer is to extend current representation learning
models with multi-modal contexts that encompass not only
vision and sound, but also other types of contextual data,
such as spatio-temporal information, various types of sensor
data and infrequently occurring instantaneous events. If our
ultimate goal is to build true AI, its representation must be
built from more senses than just text.

The Data Sandbox
The type of representation learning mechanisms discussed
in the previous sections are data-intensive and require large
amounts of data to learn from. We expect the future IoTs
to produce tsunamis of data where such models will thrive.
However, getting access to such amounts of controlled data
for development purposes is currently more difficult. We use
the notion of a data sandbox (indicating that we start with
baby steps) for collecting heterogeneous multimodal data.
The data sandbox collects information from a user’s com-
puter, and stores the following information:

• Text on the user’s screen (using the Google Cloud Vision
API1).

• Text from the user’s keyboard.
• Transcribed speech (using PocketSphinx2).
• Sentiment based on the user’s facial expression (captured

by the computer’s camera, and using the Google Cloud
Vision API).

• Sentiment based on faces on the user’s screen (using the
Google Cloud Vision API).

• Labels and categories recognized on the user’s screen (us-
ing the Google Cloud Vision API).

• Various sensor data, including:
– CPU usage.
– Memory and disk usage.
– Battery life.
– Temperature.

This heterogeneous data will serve as the foundation for
our initial experiments on multimodal representation learn-
ing. The idea is to extend embedding models with extralin-
guistic contexts, such as sentiment labels from facial expres-
sions, or even CPU usage and core temperature. Although
the amount of data that we expect to be able to collect using
the data sandbox is too small to allow for more advanced
techniques such as deep learning or compressed sensing, we
plan to use statistical correlation measures to find interest-
ing patterns in the data. As an example, imagine that we

1https://cloud.google.com/vision/
2https://github.com/cmusphinx/pocketsphinx
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use a word embedding technique to learn a concept such
as soccer based on the text on a person’s screen.3 Next,
imagine that we notice that the soccer concept often co-
occurs with positive facial expressions captured by the com-
puter’s camera and low CPU usage. This pattern constitutes
a higher-order concept, which we might label something
like taking a break from work. If instead we no-
tice both high CPU and memory usage in conjunction with
the soccer concept, we might instead infer that the user
is in a state of waiting for the experiment to
finish.

Possible Use Cases
Producing representations of diverse, textual and non-
textual, data provides the possibility to represent user ac-
tivity in diverse and interesting ways. Yet how could this be
made actionable to have an influence on user or system be-
havior?

One approach taken by Intelligent User Interface research
has been to make use of Bayesian models of user activ-
ity, “automatically” activating system actions based on pre-
dicted desired user outcomes. This has been used to, for ex-
ample, allow systems to achieve a basic understanding of
user intention based on context, and to perform different ac-
tions at different times in response to the same input (Wilson
and Shafer 2003). Other work has made use of one of our
data streams (text scraped from the user interface) to predict
users’ ongoing “tasks”. While potentially interesting, this is
a heavily reductionist model of user activity, and user state
more broadly which is multifaceted. Clearly, a general rep-
resentation of user activity has the potential to work in more
complex ways.

In conceptualizing different uses of the representations,
we have worked with open concepts applicable to varied
contexts. Taking a historical view of context, distinctive
ways of visualizing user activity from the data streams col-
lected could support searching of past activity by users
through looking for similarities between current activity and
past activity events. The same interaction paradigm could af-
ford the exploration of activity between users, or groups of
users, and could be expanded to not only show the temporal
relationship to the membership of a particular class of user,
but with expanding the interface to expose the dimensions
which relate to each classification. This could show that in
one dimension an individual may be an outlier, but similar to
many others in the rest of the vector representing this user.

Diverse representations might also enable a richer under-
standing of contextual inactivity and object appropriation.
The insights into user relationships with and through things
that this would provide could allow for the development
of more sustainable products and systems. A deeper under-
standing of relationships might also inform a more mean-
ingful design of interactional dialogs with conversational

3Such concept learning could be accomplished e.g.by clustering
the words in an embedding model, resulting in clusters of words
that have a semantic relation. A soccer cluster might be populated
by words such as “offside”, “ball”, “goal”, “kick” and “Zlatan” (the
name of a famous Swedish soccer player).

and embodied agents that appropriately act and enact with
users and on their behalf. Additionally, a smart data layer
might also support the design of experiential narratives that
assist multiple user intentions with multimodal interactions
for immersive or embodied user experiences. More broadly,
building representations of users’ ongoing activity may pro-
vide ways of supporting ongoing activities, such as speech
recognition, Internet search, and advertising. However, we
suspect that this would not be in the classic prompting of
activity, but in different classes of activity that fit more with
the ongoing modeling of action. The openness of these ini-
tial concepts enables future investigations into specific use
cases across many contexts, from idiosyncratic routines to
affective health to enterprise workflows, in which when and
how to interact with the user requires a careful consideration
of what can be understood from the systems’ understanding
the user.

In conclusion, while many of these envisioned use cases
for a smart data layer might break with the expected utilitar-
ian forms of use, we propose that in designing such a layer
to support more playful, meaningful, and contextually ap-
propriate applications it can be a driver for the development
novel paradigms of interaction for the Internet of Things.
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